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ABSTRACT

A theoretical study is presented which predicts the depth of craters
produced in a thick aluminum alloy target, AL-2024 T6, when impacted by
low-density heterogeneous and homogeneous projectiles at velocities of
7.35, 20, and 50 kmm/sec. The prediction is based on a hydrodynamic
model for computing the flow field and a comparison of the computed dynamic
pressure with the yield stress of the target for terminating the crater. This
indirect method for including the strength effect is first shown to give an
accurate prediction of the final crater produced by a normal density alu-
minum projectile at an impact velocity for which experimental data are
available. The criterion is then applied for heterogeneous porous projectiles
and homogeneous projectiles of reduced density for velocities in the meteo=-
roid range. Also included is the development of an improved equation of
state for homogeneous reduced density projectiles and the numerical tech-
nique, involving linked particle-in-cell and Eulerian finite difference
schemes, that was employed for the calculations.
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THEORETICAL PREDICTION OF CRATER SIZE FOR HYPERVELOCITY
IMPACT BY REDUCED-DENSITY PARTICLES

by

T.D. Riney* and J.F. Heyda¥#

SUMMARY

In order to study the effect that the reduced bulk density and structure
of meteoroids may have on their penetrating ability, numerical techniques
have been used to solve the compressible flow equations for a thick 2024 T6
aluminum alloy target impacted by several low-bulk-density projectiles over
a range of velocities characteristic of meteoroids., The projectiles were
chosen to correspond in mass and shape to a solid one of normal density
(2.7 gm/cc), two heterogeneous configurations with distributed mass ker-
nals of normal density and average bulk density of 0.5 gm/cc, and a homo~-
geneous projectile of reduced density equal to 0.5 gm/cc. Aluminum, which
has Hugoniot characteristics similar to stone (for stony meteoroids), was
selected as the basic material of the projectiles.

The numerical treatment selected for solving the axisymmetric
compressible fluid equations employed a particle-in-cell computer code,
VISTA, for the early stages of the process in which it is desired to follow
the distortion of the various projectile configurations in detail, Once the
projectile has delivered momentum and energy to the target a LINK program
was used to smooth the flow field in a critical region near the axis of sym-
metry and to rewrite the computational data in a form suitable for continuing
the calculations with an Eulerian computer code, PICWICK III,

An adequate equation of state for normal density aluminum represent-
ing the targets, solid projectiles, and distributed mass kernels in the het-
erogeneous projectiles is available in the literature. Since it does not des-
cribe the response of homogeneous reduced-density aluminum, an improved
equation of state was developed for this material based on a modified Plate-
Gap Model of a porous solid,

Two methods have been employed for allowing for strength effects in
interpreting the hydrodynamic calculations: an indirect method based on
late-stage equivalence which was found to be inapplicable for predicting
craters for the heterogeneous projectiles; and a more direct applicable

* Group Leader, Theoretical and Experimental Mechanics Operation

*% Consulting Mathematician, Mechanics Section



method in which the dynamic pressure in the region surrounding the forming
crater is compared with the residual yield strength of the target material in

the wake of the shock., The two criteria were shown to give compatible results
when applied to the calculations corresponding to impact by a normal-density
projectile at 7,35 and 20 km/sec. The explicit prediction based on the dynamic
pressure criterion is also found to be in excellent agreement with existing
experimental data for the lower velocity.

The verified prediction method was then applied to the prescribed
low-density heterogeneous and homogeneous projectiles for impact velocities
of 7.35, 20, and 50 km/sec. In all cases the predicted crater depths were
less than was predicted for normal density projectiles of the same mass and
impact velocity. The craters of the reduced-density projectiles were shallower
and wider. The difference was found to decrease as the velocity was increased
but persisted throughout the velocity range covered.



I. INTRODUCTION

The existence of a hazard to the operation of a space waste-heat
radiator of space power systems or other spacecraft components due to
meteoroid impact has been recognized as an important factor in the design
of such components (ref, 1), The possible severe weight penalty associated
with providing armor or other protective material for such components in-
volving lengthy exposure of large vulnerable areas requires that a realistic
evaluation of the hazard be made in order to develop efficient, lightweight
meteoroid protection,

Many variables may affect the phenomenon of hypervelocity impact
into fluid-carrying space radiators, such as the specific geometry, the
materials used for the radiators and armor protection, the operating tem-
perature, and the presence of a liquid or gas in the tube. The NASA Lewis
Research Center has employed laboratory tests to study these effects experi-
mentally (refs, 2 and 3), In particular it has been shown that the inner sur-
face of a fluid-carrying tube could be made to dimple and spall with armor
thicknesses significantly greater than the crater depth. Hence, simple
cratering is not the only critical design condition.

Although these laboratory tests give a better qualitative and quanti-
tative understanding of the damage modes resulting from impact on specific
armor and radiator configurations, they are restricted to velocities less than
10 km/sec by the limited capability of available acceleration devices. The
actual velocity range of meteoroids extends to 72 km/sec with typical values
of 20 to 30 km/sec, Moreover, the majority of the meteoroids important to
large components such as space radiators are believed to be of heterogeneous,
porous structure of average bulk density as low as 0.2 gm/cc (ref. 4).

Tests with heterogeneous low-density fluffy projectiles have not been
possible even for laboratory velocities since the simulated meteoroids
cannot withstand the acceleration required by the experimental techniques.
It has been suggested, however, that impact damage resulting from such
particles might not be the same as from solid particles of the same
mass (ref., 2).

In view of the limited capability of experimental techniques, the NASA
Lewis Research Center considered it desirable to employ theoretical tech-
niques to simulate hypervelocity impact by heterogeneous low-density
meteoroids., The normal impact of equi-mass projectiles of various mass
distributions onto a thick 2024-T6 aluminum target was selected for the
theoretical studies. The projectiles were chosen to simulate stony meteoroids
corresponding in mass and shape to a solid one of normal density, 2.7 gm/cc,
two heteogeneous configurations with distributed mass kernels of normal
density and average bulk density of 0.5 gm/cc, and a homogeneous projectile



of reduced density equal to 0.5 gm/cc. These four configurations, designated
respectively as &¢-, 8-, y-.and § -projectiles, are depicted in Fig. 1. The
objective of the study was to compare the theoretical crater depths of these
reduced-density projectiles with that of the corresponding normal-density
particle for velocities of 7.35, 20 and 50 km/sec,

To solve the system of equations governing the axisymmetric impact
problems of interest requires the use of numerical techniques programmed
for modern digital computers. In the next section of this report the adapta-
tions required for the present study are described. Also presented is the
criterion incorporatedinto the calculations in order to predict the final crater
dimensions,

A necessary input for the numerical calculations is a hydrodynamic
equation of state for the projectile and target materials., Since only limited
shock Hugoniot data were available for stony materials, an aluminum equation
of state was used for the projectiles as well as the targets, This approxi-
mation is consistent with their nearly equal normal densities. Even for
aluminum, however, no satisfactory equation of state was available for the
treatment of the reduced density § - projectile, An earlier study (ref, 5) has
shown that the pressures produced in the target along the axis of symmetry
are sensitive to a change inthe equation of state assumed for a reduced density
projectile. It may be that the cratering flow is similarly sensitive. Con-
sequently, an improved equation of state for porous aluminum, as well as
other materials, is developed in the third section of the report, The subse-
quent sections contain the details of the calculations and the predictions of
the final crater dimensions for the seven problems treated,



II. NUMERICAL TREATMENT

The response of the target material to the loading induced by
meteoroid impact ranges from hydrodynamic behavior with negligible shear
stresses for early time close to the point of impact, to purely elastic be-
havior at a later time after the cratering or penetration process is complete.
The problem treated in its most general aspects requires a detailed investi-
gation of the behavior of different material models under rapid loading: a
hydrodynamic model in the impact zone; a visco-plastic model in a transition
area; an elastic-plastic model in a plasticized region; and an elastic model
in an elastic precursor region. Some compromise must be made between
the complexity of the physical problem and the practical difficulties involved
in solving the equations governing the model selected,

2,1 Choice of Computational Method

For a given one of these models the conservation relations for mass,
momentum, and energy, into which appropriate constitutive relations des-
cribing material response to intense impulsive loading have been inserted,
vield a system of partial differential equations. A solution to these equations
for realistic geometries and boundary conditions cannot be obtained without
resorting to large-scale computer codes, Of many possible choices of
numerical schemes, three basic procedures have been applied to problems
of this nature. In schemes based on a Lagrangian description, a coordinate
system or grid is embedded into the configuration to be studied., The de-
formation and flow of the projectile-target configuration is then monitored
with reference to this deformed grid-work, In Eulerian numerical schemes,
the coordinate system is not embedded into the configuration, but is rather
fixed in space and the calculations follow the material that happens to be in
a given computational cell at that particular time, A third type of numerical
method is the particle-in-cell scheme which is a combination approach insofar
as both the Eulerian and Lagrangian coordinate systems are utilized in each
cycle of the calculation, The Lagrangian representation, however, is ap-
proximate in the particle-in-cell scheme since it consists of discrete mass
particles whose positions are monitored with respect to a grid that is
fixed in space,

Each of these numerical schemes has advantages and disadvantages,
The Lagrangian scheme treats material interfaces and free surfaces in a
straight forward fashion and also permits the use of constitutive relations
for the materials in which the stress history of each piece of material is
taken into account, Such a capability is required to treat an elastic-plastic
model, The Lagrangian description, however, is sensitive to the distortions
in the flow field being studied, and instabilities are introduced if the em-
bedded cells are deformed too severely. During hypervelocity impact both



projectile and target are subjected to severe distortions, and the embedded
cells would need to be repeatedly rezoned if the calculations were to be con-
tinued. A further complication in problems involving the heterogeneous f
and y projectiles (Fig. 1) would be the necessity of allowing for the closing
of the voids as the projectiles are distorted,

In the case of Eulerian schemes, large distortions cause no problem.
However, the stress history that a given segment of material has been sub-
jected to cannot be obtained, Consequently, an elastic-plastic model is
difficult to treat, Of more importance in the present application is the fact
that it is extremely difficult to treat more than a single material, and free
surfaces cannot be treated without resorting to artificial constraints on the
flow, This is a consequence of the fact that material entering a cell of the
fixed Eulerian mesh is considered to be immediately diffused uniformly
throughout the cell volume. The capability of distinguishing between projectile
and target materials is required in treating § ~projectiles, and the capability
of treating special projectile geometries with internal free surfaces at the
voids is required for the problems involving 8 and vy -projectiles.

The combined Eulerian and Liagrangian coordinate systems used in
the particle-in-cell scheme readily permits the treatment of the large dis-
tortions, free surfaces, and multiple materials, The representation of the
materials by the mass particles, whose positions are monitored at each
stage of the calculation, allows free surfaces to be located and avoids the
false diffusion problem. The particle-in-cell scheme cannot treat an elastic-
plastic model., It has been found that the method fails prior to the onset of
strength effects because of yet another reason; the resolution provided by
the discrete mass representation employed does not permit the flow process
to be followed at pressures low enough for the anisotropic components of the
stress tensor to play a significant role.

Since none of the individual numerical schemes is capable of treating
the full cratering process it was decided to use the particle-in-cell scheme
in the early stages when it is desirable to follow the interaction of the com-
plex projectile configuration with the target., Once the projectile has
delivered its energy and buried itself in the target the computations will be
continued from that point using an Eulerian numerical scheme,

Neither the Eulerian nor the particle-in-cell schemes used treat the
elastic-plastic regime of the cratering process, The visco-plastic model
with realistic choices for the viscosity parameters has led to numerical
results using the Eulerian scheme that are essentiallythe same as obtained
using a compressible fluid model (ref. 6). A compressible fluid model was
therefore chosen for the calculations, and an indirect criterion for inclusion
of the strength of the target was employed for the prediction of the final
crater dimensions,



2.2 Finite Difference Approximations

The simplifying assumption that the impacted materials behave like
a compressible fluid, valid during the early stages of the process, leads to
the following system of equations for the axisymmetric case (all symbols
are defined in the Appendix):

= f(p, I) (2. 1)
—2—%+u%5— +v§%+pdiv;= _ (2.2)
P(S—:-+u 2‘:+v%> =-—g-§- (2.3)
(B vt ) 2
p(gi +u gi + v gi ) = - pdivu (2.5)

Here p, p, u = (u, 0, v), and I denote the density, pressure, velocity, and
specific internal energy, respectively,

In both the particle-in-cell and Eulerian numerical schemes, the
area occupied by an axial section of the projectile-target configuration is
dividedinto a mesh of rectangular cells, fixed in space, through which the
material moves, The sequence of numerical calculations for the two schemes
is the same, At the end of the n~th time cycle, the density, velocity com-
ponents, internal energy, and pressure are associated with each cell (i, j):

(7, u", v, 10 7). (2.6)
i,)

To obtain the corresponding data at the end of the (n + 1)-th time cycle, one
makes a three-phase calculation, In phase 1, the pressure is updated and
the cellwise field functions are changed neglecting the motion of the medium,
Thus, the transport terms are dropped from the momentum and energy
equations, and (2, 3), (2.4) and (2.5) are replaced by difference formulas
for computing tentative new cellwise velocity components and internal energy:

n ~n+l ~nt+l ~n+tl n
Py u s v » I ,p)ij (2.7)
?

In phase 2, the material contained in each cell is moved according to the
velocity of the cell in which it is located and the velocities of the neighboring
cells, The material moved carries its share of the cellwise energy and



momentum with it; the field functions are then recalculated to account for
the motion:

nt+1 n+l n+l n+l n

(o s U s Vv s 1 s P ), . (2.8)
1,
The pressure is now updated by substituting the cellwise values of pn+1 and
1%L into the specified equation of state (2.1):
ntl n+tl ntl n+tl n+tl
(P s U » vV s I s P )1,] (2.9)
H

In phase 3, various functionals are computed which furnish checks on the
accuracy of the calculations, The computations are then repeated for nit2,
etc,

The only essential difference between the Eulerian and particle-in-
cell numerical schemes used is in the treatment of the mass flow in phase 2
of each time cycle. The former employs an approximation of the continuity
equation (2, 2) to determine the diffusion of mass, momentum and energy
across each cell boundary, The latter employs marker particles to repre-
sent centers of mass of discrete material elements whose positions are
monitored as they move through the mesh of fixed cells, each mass particle
carrying its share of cellwise energy and momentum for that time cycle. It
is this Lagrangian treatment in phase 2 that enables the particle-in=-cell
scheme to readily treat free surfaces and multi-materials,

The detailed logic of the particle-in-cell computer program (VISTA),
developed in a related study and used in carrying out the initial stages of
the impact calculations during the present study, has been described in
detail elsewhere (ref, 7). The logic of the Eulerian code PICWICK III,
developed earlier and usea tor the later stages of each of the impact prob-
lems treated in this study, is very similar to that employed in the indepen-
dently developed OIL code (ref, 8).

2.3 Singularity at Axis of Symmetry

In cylindrical coordinates

9 (ur) N dv

31 32 (2.10)

— 1

divu= —

r

The singularity at the axis of symmetry, r = 0, leads to inaccuraciesin

the finite difference approximation for div u in the vicinity of the axis and,
as a consequence of (2.5), corresponding inaccuracies in the finite difference



approximation for ?. The usual central difference approximation (refs. 7
and 8) relates the cell center value of div U to values of the radial velocity
at the right (R) and left (L) cell boundaries and the axial velocity at the front
(F) and back (B) cell boundaries, These boundary values are taken to be the
average of the cell center values of the two adjacent cells: '

- ) 1 (ur)R'J- -(ur)LJJ. . vi,F- v, B
(divu); s =Go12)h h Kk

At a cell adjacent to the axis, i = 1, the reflective condition (ur)L .= 01is
imposed and the above expression reduces to +J

u, .+ 3u, . v -
1,5 2,]

2h k

(div'ﬁ)1 j = (2.11)

With this treatment it can be shown that there is no loss of total energy or
axial momentum at the axis of symmetry.

Since u = 0 at r = 0, it is clear from application of L'Hospital's Rule
to (2, 10) that

lim div u v
rl_.o - [——az] (2.12)
r=0

Comparison with (2. 11) indicates that the first term in the approximation
for div u leads to too large an estimate whenu_ + 3u, > 0. This is always
true during the early stages of the calculations after the rarefaction wave
from the periphery of the impact area arrives at the axis of symmetry ap-
proximately one radius below the center of impact, Consequently, from
(2.5), theinternal energy is decreased at too great a rate during that period.
Conversely, the kinetic energy is increased at a rate greater than it should
be and, since this is reflected primarily h increased radial velocity, the
effect is cumulative, This treatment, (2.11), however, has apparently been
used by all published descriptions of computer codes which have utilized the
basic particle~in-cell and Eulerian schemes developed at the Los Alamos
Scientific Laboratory (eg. refs, 7 through 13),

During the course of this contract, a detailed analysis of the difference
equations was made. A new formulation was developed which not only con-
served total energy at the axis of symmetry, but also conserved kinetic
energy and internal energy individually. Moreover, a forward difference
scheme was used in the cells adjacent to the axis of symmetry in order to
provide a better approximation to (2. 12) than that obtained with (2.11), When
the lengthy alterations were incorporated into the PICWICK IO code, how-
ever, the presence of round-off errors under radical signs, required in the
formulation to conserve the energy components, led to the failure of the new
scheme in actual application,



The details of this analysis as well as several less ambitious attempts
to improve the accuracy of the finite difference scheme in the vicinity of the
axis have been documented (ref. 14). Although these studies provided great
insight into the numerical method, they were not utilized in the computations
reported in the sequel and will not be detailed here,

In the present calculations the VISTA code is used for the initial stages
of the impact process, This includes that period of time during which the
edge rarefactions arrive at the axis of symmetry and the radial flow near
the axis is greatest, It therefore includes that portion of the process when
the inaccuracies arising from the approximation (2, 11) are greatest. The
over estimate of the radial flow near the axis causes an excess of mass
particles to move from the critical area near the axis. This effect is re-
flected by the sparsity of mass particles in the critical area that may be
observed in plots of flow fields computed using particle-in-cell schemes
(see for example Fig, 5b of ref, 15, Fig., 8 of ref, 16, and Fig, C-4 of ref,
17). The same effect is observed in the VISTA calculations in this report.

By the time the projectile has buried itself into the target and the
cavitation flow takes over, the radial flow should be very small in the vicinity
of the axis between the forming crater and shock in the target, The calcula-
tions associated with these later stages of the flow process should therefore
be less sensitive to the singularity at the axis of symmetry provided the
VISTA data, read off the magnetic tape as input data for these later stage
PICWICK III calculations, is smoothed in the critical region,

2.4 VISTA to PICKWICK III Link

In making the link between the early stage VISTA calculations and the
later stage PICWICK III calculations there are two principal steps. The
VISTA data saved on magnetic tapes at the end of n-cycles is rewritten in
the form appropriate for a restart using the PICWICK III program, Before
the calculations are actually resumed, however, the data are smoothed in
the vicinity of the axis of symmetry to reduce the inaccuracies resulting
from the singularity there.

The LINK program to carry out these two steps is more involved than
may be expected., This is a consequence of the complex storage sharing in
the VISTA code which alternatively employs internal core storage and ex-
ternal storage, on magnetic tape or disk, for the mass particle information
and the cell-wise information, LINK must necessarily process the VISTA
mass particle information in order to accumulate the contributions to the
mass, M, radial momentum, R, axial momentum, Z, and total energy, E,
that each particle makes to the cell in which it is located, At this inter-
mediate stage of the LINK computations, after all the particles have been
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processed, the cellwise quantities in storage are the corresponding cumulative
values:

The dash represents the fact that the pressure in cell (i, j) is not yet computed
and the associated storage is kept available, The associated field variables,
corresponding to equation number (2. 6), are then computed according to the
following:

n MY a R" n zo n 1,2 2 o
P = —;‘,u = _;1‘ sy V. = n ,I =-_2'(u +V‘)+"_n s —
M M M

i,J
Here, '7'i = Ti‘j is the volume of a cell in the i-th column of the mesh.
-9

Having rewritten the data in a form suitable for PICWICK III, the
LINK program next recomputes the density, radial velocity, and internal
energy in the critical region near the axis of symmetry. In this region, con-
sisting of the first N  columns and rows J.  through J_, the radial velocity is
equated to zero and the axial velocity left unchanged, thus conserving axial
momentum, while the density and internal energy are set equal to a common
value within the N cells of each row, These common values are determined
by requiring conservation of mass and total energy within each row,

The smoothing process decreases the kinetic energy in the affected
region and increases the internal energy by a corresponding amount., It also
increases the density adjacent to the axis, Its effect therefore is opposite to
that due to the inaccuracy of the finite difference approximation to div ¥ and
attempts to compensate for the latter cumulative error prior to continuing
the calculations with PICWICK III, In the problems treated here in this study
the VISTA distribution was normally smoothed over the first three columns
for about ten rows between the projectile~target interface and the shock wave
in the target,

The VISTA data, smoothed near the axis of symmetry through pro-
cessing by the LINK program, is read into the PICWICK IIl code as initial
data. The projectile and target materials are no longer distinguished, The
equation of state for the target material is used to compute the cellwise
pressure p” = f{p®, I™) in the subsequent PICWICK III calculations.

11
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II1.- EQUATIONS OF STATE

3.1 Normal Density Materials

Empirical equations of state of the form (2. 1) have been constructed
that fit the existing Hugoniot data for normal density aluminum, and approxi-
mate states off the Hugoniot curve, by simplified solid state physics and
thermodynamic considerations. The most widely used of these forms is
that due to R.K. Osborne of the Los Alamos Scientific Laboratory,

1
= —-— 3'
p o, {glayta, (L) +e (b + L(by 40, 0) +I(c +c L)1) (3.1)
Heree=p I, £ = (p/p_)-1 and the coefficients P 3pr 2, b, b, b, c,
c., and @ %re material constants. Table I gives the values of the cohstants
for alumiflum.

Equation (3. 1) provides an adequate description of the response of
normal density aluminum to intense compression. It was used to repre=-
sent the target for all the calculations in this study. Equation (3.1) was
also used to describe the response of the normal density aluminum ¢ -pro-
jectile and the response of the distributed mass kernals of normal density
aluminum occurring in the 8- and y -projectiles, Fig. 1.

The empirical equation (3. 1) has been found, however, to be quite
unreliable for predicting states far off the Hugoniot of normal density alu-
minum as is evidenced by its failure to check experimental data obtained
by impacting porous solids (see ref. 17). Equation (3.1) cannot therefore
satisfactorily describe the response of the § -projectile in the VISTA impact
calculations.

A "theoretically correct' equation of state for alurminum, based on
more complete considerations from solid state physics, thermodynamics
and some quantum mechanical calculations, has been developed (refs. 17,
18, 19). The equation is correct in the sense that it is the best that can be
written based on current physical theory and has been formulated to fit the
available Hugoniot data generated from both normal density and porous alu-
minum, The formulation, however, is presented in tabular form generated
from complex computer computations and is most unsuitable for use in the
VISTA calculations.

It was therefore necessary to develop an empirical equation of state
of the form (2. 1) that would adequately treat the porous aluminum § -projec-
tile.



3.2 Porous Materials

The empirical equation of state presented here is based on the ob-
servation that an arbitrary p, p, I state of a solid can be regarded as the
Hugoniot state of a solid with a specified initial off-normal density (porous
or augmented density) and that if a description of such Hugoniot states as a
function of a '""porosity parameter'' is available, then the full equation of state
of form (2, 1) can be written as the locus of such Hugoniot curves. For-
tunately, a relatively accurate model, the so-called Plate-Gap Model,
is available for predicting Hugoniot states of an initially porous solid,
and this will serve as the basis for developing the empirical equation of
state.

1. Consider the equation of state written in the form, equivalent
to (2.1),

p =pmnI . n=plp (3.2)
where p is the normal (crystal) density of the solid and I is the specific
internal energy. Geometrically, one may regard (3, 2) as the equation of
a surface,

If we take the initial state of the solid to be

P = 0, I =0, L 1, (3.3)

then states achievable through shocking the material constitute its Hugoniot.
Such states satisfy (3.2) and also the equation

P 1
I = 1 - =), . 3.4
o 7 n (3.4)

Equation (3.2), (3.4) jointly define the Hugoniot curve for the normal density
solid, a curve which lies on the surface (3.2). This curve can also be
written in the form

p =pln) I = I(n) . (3.5)

To obtain states off the curve (3.5), one can shock the solid from a porous
initial state

, m = po/Eo, (3. 6)

where ; is the initial density of the porous solid. Equation (3.4) is then
replacedoby

) (3.7)

1
2p n

13



and the displaced Hugoniot curve associated with this porosity by
p=p(n,m), I=I(n, m) (3.8)

For a porous solid, m >1; for one of augmented initial density, m < 1,
Since from (3.7),
1

= — [p + 2 1] , 3.9
m o p P, " (3.9)

we see that an arbitrary p, 7, I state will correspond to a Hugoniot state

for porosity m defined by (3.9). The equation of state surface (3.2) can

then be generated as the locus of curves (3.8) as m varies from 0t to = ,

To proceed further one requires an independent formulation for the Hugoniot
of a porous solid. This is supplied by the Plate-Gap Model which is discussed
next.

2. Thouvenin (ref. 20) has described a model for the behavior of a
porous solid under shock loading which is both simple and remarkably
accurate. He replaces the solid by an array of parallel plates, each of normal
density p and of thickness \ = p /p , where g Py is the initial density of the
porous m%.tenal the air gap betwgen any two ne1ghbor1ng plates is taken
to be 1-A, Fig. 2. The porous material is thus taken to be periodic in
structure, the width of each period being unity and of density p A= p ’
thereby agreeing with the required initial density.

Consider now a plate impacting the first plate at speed 2u. A shock
is driven into it at speed D(u) with corresponding particle velocity u, where
D = D(u) is the wave speed in the non-porous material. When the wave reaches
the rear free surface of the first plate, the pressurized material of the plate
begins to be unloaded by a rarefaction wave moving back toward the front of
the plate. The unloaded material then fills in the gap 1-A at the free sur-

face velocity we = 2u, The total time for all this to happen is then
A 1-2
5t 3 )
fs

and this is taken to be the time for the crush-up wave velocity D* in the
porous material to cover unit thickness, Hence, we have the first of
Thouvenin'’s relations

1 _ A N 1-A
D D(u) 2u

(3.10)

Thouvenin derived a second relation relating u and the crush-up
particle velocity u* based on an assumed equilibrium crush-up state.
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This state is assumed to occur when the shock driven into the unloaded
material after its impact with the second plate reaches an asymptotic
limiting strength after being attenuated by the unloading waves moving
to the left in both first and second plates. Unfortunately, this second
relation is based on an approximate analysis and is nowhere nearly as
accurate as relation (3.10). However, as pointed out in an earlier re-~
port (ref, 5), this second relation may be replaced by

F(2u - u%) = Eo D% u* (3.11)

where p = F(u) is the shock polar for the non-porous solid. Equation (3.11)
expresses the fact that u¥* quite obviously must lie between u and 2u, (Fig. 3),
and hence may be determined by conservation of momentum across the
crush-up front. In Fig. 3, the arc p = F(u) represents the loading path for

a plate while arc PAB is the unloading isentrope, approximated here by the
mirror image of the Hugoniot p = F(u) about the vertical drawn at u.

Relations (3,10), (3.11) give a surprisingly accurate description of
the Hugoniot states p¥%, D#*, u¥* for a porous material, This has been shown
by comparing the predictions of the model with available experimental data
for metals (see ref. §), For aluminum, comparison is also made with pre-
dictions given by the ''theoretically correct' equation of state due to Wagner
and Bjork, (ref. 17).

3. To proceed further with the derivation of the empirical equation
of state p = p(n,I), it is observed that if p, 7, I is an arbitrary state of
the solid with initial state p =0, I =0, 7 = 1, then this state can be regarded
as a Hugoniot state of the porous solid of porosity m given by (3.9) and
having u* and D* determined from

. . b p+2p i
u¥ = ,’21 , D% = o = —, (3.12)

which follow directly from the conservation relations,

Next the basic plate-gap relations (3.10), (3.11) are rewritten in
the form

1 B 1 1 1 1

D% 2u - m [ 2u D{(u) ] ! (3.13)
o

Py (2u = u¥) D(2u - u¥) = oy D* ux (3.14)
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Substitution for m, u¥%, D% from (3.9) and (3. 12) produces equation of state
in parametric form where u is the parameter,

po”VZI 1 np [ 1 1]

Pp +20n1 2u p+2p Nl 2u D(u)

© ° (3.15)
2u- 4f21 D(2u - 2 ) = £ . (3.16)
( ) o

In these equations D is a known function of u. Thus, the only requirement
for writing an equation of state for a given solid of known normal density

o is knowledge of its shock velocity-particle velocity relation, D = D(u).
o

For most materials, and for many liquids also, the function D(u)
is a linear function of u over a wide range of pressure within a given phase,

D(u) = A + Bu (3.17)

where A and B are known empirical constants. Hence, based on this rela-
tion , a specific non-parametric form of (3.15, 3.16) may be derived. To
do so, p is eliminated between (3.15) and (3.16) to obtain

D(u) D(2u -4f 21 ) n

Using (3.17) in (3.18) u can then be determined in terms of 1, I by solving
a quadratic equation, The result turns out to be

\/_A_-A+ > [34/2T + (3A - By 21 ) (_ n )] (3.19)

n-1
2B [2 - ~4—
[ B(n ) ]

u =

where the discriminant A 2 0 is given by

A= [A+% {(A+B\[?1‘) ("T'l—)- 34 21 }]2+4AB 21 .
(3.20)

Knowing u, the full equation of state is then found in the form

P = P, (Zu-"ZI )y [ A+B (Zu-\IZI )y ] (3.21)



Thus, from the manner in which it was derived assurance is provided
that equation (3.21) will agree with experimental porous Hugoniot data.

4, In the derivation of {(3.21), A and B were assured constant, A
more precise description for D(u) can be obtained by taking A, B, to be
functions of 3. For aluminum, these functions are

A(n)

. 3452 + , 12767 (cm/usec)

(3.22)
B(n)

1.8237 - 29331 .

The values (3.22) were used in the VISTA calculations to describe the
response of the § - projectile,
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Iv, CALCULATIONS

The four equal-mass projectile configurations of Fig. 1 were em-
ployed for a total of seven VISTA-PICWICK II computer runs as listed in
Table II. In each case a thick 2024 T6 aluminum alloy target was impacted.
The o-projectile, normal density aluminum, Po = 2.7 gm/cc, was treated
for impact velocities of vy = 0.735 cm/p sec (problem N1), and v_ = 2,0 cm/usec
(problem N2). Three additional computer runs were made at v_ = 2,0 cm/usec
for reduced~density projectile configurations of average bulk density P, =0.5
gm/ce, The first of these, the heterogeneous B -projectile, contains normal
density aluminum kernals distributed throughout the volume of the projectile
(problem N3)., The second of these, the heterogeneous 7y -projectile, contains
normal density aluminum kernals that are concentrated along the central
region and the periphery of the axisymmetric projectile configuration (problem
N4). The third of these, the homogeneous § ~projectiles, is composed of uni-
formly reduced-density aluminum throughout (problemn N5). The heterogeneous
B -projectile was also treated for impact velocities of Vo = 0.735 cm/u sec
{problem N6), and Vo T 5.0 cm/psec (problem N7).

In the calculations, the equation of state form (3, 1) was employed
throughout except for the VISTA calculations in problem N5 wherein form
(3.22) was used to determine the response of the porous § -projectile, For
the homogeneous material composing the - and §-projectiles, it is possible
to combine the equations of state for the projectile and the target with the
Rankine-Hugoniot relations (see ref. 21, pp. 13-16) to obtain the initial
response of the impacted materials, This was done for impact velocities
of v, = 0.735, 2.0 and 5.0 cm/usec and the corresponding Hugoniot
values of the pressure, Py shock velocity, RH, and compression,
Pi1/Pys in the projectile and target are listed in Table IIl. For v, = 0.735,
and 2.0 cm/p sec the values listed for projectile and target of normal density
aluminum correspond to the impact conditions in problems N1 and N2 re-
spectively, For vy = 2.0 cm/d sec, the values listed for normal density
target and projectile of reduced density, p, = 0.5 gm/cc, correspond to the
impact conditions in problem N5, From Table III is clear that at a given
impact velocity the pressure that would be generated:by a 9§ -projectile is
approximately one-third that which would be generated by an & -projectile,

The axisymmetric numerical calculations were performed on the
direct coupled IBM 7094/7044 computer system at the NASA Lewis Research
Center. By careful treatment of the computing sequence and appropriate
manipulation of internal and external memory with this system it was pos-
sible to provide a finite difference computational mesh in excess of 2000
cells in both the VISTA and PICWICK III codes, The choice of the com-
putational mesh within this constraint and the number and distribution of
the mass marker particles in the VISTA calculations depends on the resolution
desired and the computing cost that appears reasonable,
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In this study, a finite difference mesh of 36 columns and 52 rows
(1872 cells) to represent an axial section of the projectile-target configuration
seemed optimum. The initial configuration (Fig, 4), utilized VISTA's
capability of representing the incoming projectile as partially outside the
mesh, thereby leaving a greater number of rows available to represent the
target, This choice also allows the finite difference mesh to be rezoned three
times if desired. In each rezoning, possible in either the VISTA or PICWICK III
phase of the calculations, four of the existing cells are combined into a single
enlarged cell thus doubling the linear dimensions of the axial section of the
configuration encompassed by the mesh (Fig. 5). In the VISTA calculations,

the undisturbed target material was represented by nine mass markers per - - =\

cell as were the homogeneous o~ and § -projectiles. Twenty-five mass
markers were employed to represent each of the undisturbed mass kernals
inthe heterogeneous f§ - and Yy -projectiles,

Typically, the VISTA calculations were continued for about three-
hundred time cycles and required three hours IBM 7094 computer time. The
subsequent PICWICK III calculations continued, on the average, for an
additional two-hundred cycles and required approximately one hour of IBM
7094 computer time,.

With each of the seven problems there was generated reams of
numerical data describing the flow field at various stages of the impact
process, The sheer volume limits the analysis and presentation of the re-
sults, Detailed examination of the data, hand plots, and even mechanical
plotters were entirely too slow to be satisfactory. For these reasons
ancillary computer programs were devised for facilitating the analysis of
the calculations by use of the electronic Stromberg-Carlson 4020 computer
recorder, Graphical displays giving the current projectile-target configura-
tion, velocity field, (u, v), ., and the mass flux field, (Pu, Pv) s, Were
obtained at various stage51 c]f the cratering process, L
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V. RESULTS FOR NORMAL DENSITY PROJECTILES

5.1 Flow Field Description

The early stage deformation mechanisms computed with the VISTA
code for an a-projectile impacting at vy = 0.735 cm/pusec (problem N1)
are shown in Figs. 6(a) through 6(f).* Shock fronts are smeared over two
to three cell widths in finite difference calculations, Nevertheless, the
approximate positions of the shock moving up into the projectile and the
shock propagating down into the target from the contact area are apparent
especially in the mass particle plots., Although the VISTA calculations were
actually continued to almost 0. 7Tusec, the results beyond 0.5u sec were
increasingly inaccurate because of the discrete nature of the particle-in-
cell mass representation. The LINK program was therefore employed at
t = 0.434 4 sec and the calculations resumed with PICWICK III. The mass
particle plot at t = 0,452, Fig. 6(e), displays the low density region at the
axis of symmetry which results from the singularity in div U at the axis.
This region was smoothed during the LINK processing of the data.

In Figs. 6{g) through 6(j), the mass flux field for problem N1 is de-
picted for the later stages computed using the PICWICK III code, These
plots demonstrate the separation of the flow field in the target into two
principal regions in which the mass flux, and hence the dynamic pressure,
has peak values. One region is associated with the receding shock front
and the other with the material surrounding the forming crater. It was
necessary to rezone the finite difference mesh, four cells being combined
into a single cell, between times depicted in Figs., 6(g) and 6(h) in order
for the mesh to encompass the entire flow field.

When the impact velocity of the g -projectile was raisedtov_=2.0
cm/psec, (problem N2), the resulting higher compaction is more accurately
treated by the discrete mass representation since more marker projectiles
are compressed into a cell in the impacted region. Consequently, the VISTA
calculations remained accurate for a longer time as indicated in Figs. 7(a)
through 7(h). It became necessary to rezone the mesh during the course of
the VISTA calculations, and the rectangular irregularity of the mass parti-
cles in Fig. 7 (g) is a consequence of the associated repositioning of the mass
particles in the region originally covered by the finite difference mesh. The

*¥The dark annular regions appearing at the top of the mesh in the velocity
field plots result from an error in the associated Stromberg-Carlson 4020
ancillary program. They should be ignored.



low density region at the axis of symmetry resulting from the singularity is
again apparent in Figs. 7(e) and 7(g).

The LINK program was employed at t = 0. 717 psec in order to
smooth the VISTA data in the critical region and to continue the calculations.

Representative mass flux plots obtained in the subsequent PICWICK III calcu-

lations for problem N2 are shown in Figs. 7(i) and 7(j). A second rezoning
of the finite difference mesh was required to follow the flow process to the
stage at which the shock wave disengages itself from the forming crater,

The time variation of the partition of the total axial momentum,
scalar radial momentum, and total energy between projectile and tar-
get materials is also monitored at each cycle of the VISTA calculations.
These gross characteristics of the flow field are displayed in Figs. 8
and 9 for problems N1 and N2 respectively., The time after impact at
which the LLINK process was carried out is shown in each of the plots;
the dashed curves beyond that time represents VISTA calculations that
overlap the PICWICK III calculations made subsequent to the linking of
the codes. :

At the time of the LINK only 15% of the radial momentum in problem
N1 is contained in the projectile materials, (Fig. 8(a)), but approximately
40% of the axial momentum and energy still resides in the projectile, (Figs.
8(b) and 8(c)). On the other hand, the projectile content of all three quan-
tities is less than 5% at the time of the LINK in the case of problem N2, in
Figs., 9(a) through 9(c).

The plots in Fig. 10 illustrate the continuity of the gross character-
istics of the flow field calculated with VISTA and PICWICK III notwith-
standing the local smoothing of the data during the LINK processing. The
total forward axial momentum, Z , and the total outward radial momentum,
R+, are observed to be undisturbed by the linking process (Fig. 10(a)).
Here

Z = E: M v , R M 5.1
+ — U +)i,j + Z - i,j(u+)‘1 ' (5.1)
1, ] 1,) 1,)

where the plus indicates that the sums are extended over those cells in the
mesh for which the indicated velocity components are positive., The division
of the total energy between kinetic and internal energy should be especially
sensitive to the LINK processing since these quantities were adjusted in the
vicinity of the axis., As illustrated in Fig. 10(b), there is indeed a cusp at
that stage of the calculations, but the general trend of the time variation is
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preserved in the subsequent PICWICK III calculations. These plots are for
problem N1, but similar results were obtained for each problem treated.

5.2 Selection of Crater Termination Criterion

Since the VISTA - PICWICK III calculations employ a compressible
fluid model, there is no direct method of determining the final crater surface
from the calculations. Two criteria have been considered in predicting final
crater depth in thick targets subjected to hypervelocity impact. One is
based on the concept of late-stage equivalence of two flow-fields, and the other
is based on a comparison of the dynamic pressure in the flow field with the
yield stress of the target.

The principle of late-stage equivalence does not predict the final
crater dimension directly, but rather it provides a basis for comparing flow
fields (refs. 15 and 16). Since the pressure pulse in the target is the basic
element in the cratering mechanism, the flow fields produced by two pro-
jectiles in a specified target material are compared at times when the lo-
cations of the shock wave in the target are an equal distance below the target
surface. For equivalence it is required that at these corresponding times
the total forward axial momentum Z , the total outward radial momentum,
R,, and the amplitude of the pressure pulse become equal prior to the onset
of strength and strain-rate effects.

If two impact conditions produce equivalent flow-fields in a target,
then the final craters are assumed identical, If late-stage equivalence is
not realized between the impact condition of interest and one for which the
final crater is known, however, the criteria cannot serve as a basis for
crater predictions, It cannot therefore be applied for the cases of hetero-
geneous projectiles which are of primary interest in this study.

The dynamic pressure for predicting the final crater dimensions is
based on the detailed nature of the flow field established in the impacted
target (ref, 17). By the time the projectile has expended itself and the
cratering process in the target is in progress, the flow field is separated
into two principal regions since the shock wave in the target propagates at
a higher velocity than the rate of crater growth. This disengagement of
the two regions means that after a certain point in time the shock wave has
no further direct effect on the cratering process. The final crater depends
on the momentum content of the target material in the neighborhood of the
forming crater and its interaction with the residual strength of that material
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which has been processed by the earlier passage of the shock wave.

At the given location in the flow field surrounding the forming crater,
the velocity vector has the magnitude and direction defined by

2 2
v, =¥Vu +v tan¢ =u/v

The local mass flux is given by

M—V—Ju2+2
f_pn—p v

The assumption that the momentum contained in this flux is perfectly ab-
sorbed by a surface normal to the velocity vector leads to the following
expression for the dynamic pressure exerted on the surface at that location:

I S S R
pdyn an—Zp *

In predicting the location of the final crater surface it is assumed
that the dynamic pressure exerted there must equal the yield stress of the
target material:

Py = Oy(T) (5.2)

yn

The target material will be left with a residual temperature T in the wake
of the shock processing and, consequently, its yield strength will be de-
creased,

Criterion (5.2) represents an extension to hypervelocity impact cal-
culations of a criterion earlier employed to predict the depth of a crater
produced in a target by a metallic jet formed by a shaped charge (ref. 22).
The jet penetration theory, however, is steady-state and one-dimensional
and Bernoulli's law may be applied with more confidence,

In the present application the dynamic pressure distribution in the
region of the target surrounding the forming crater changes with time and,
consequently, criterion (5.2) does not define a unique surface. Nevertheless,
in the calculations performed in the present studies, it was found that the
surface thus defined remains very nearly stationary for an extended time,
and the relation (5.2) does indeed locate a surface which will be interpreted
as the predicted final crater surface.
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Before proceeding to the application of the criterion for the normal
density ¢ -projectiles, it is convenient to indicate the manner in which the
temperature dependence of the yield stress was determined, For a given
shock amplitude to which the aluminum is subject, py, there will correspond
a residual temperature after the material is released to zero pressure
which may be computed from the equation of state and thermodynamic
data (ref. 17). These corresponding values are plotted in Fig. 11. Also
shown there is the temperature variation of the yield strength, g (T), of
aluminum alloy AL-2024 T3 obtained from the producer's handbook (ref. 23).
Elimination of the temperature between these two relations yields a single
curve depicting the yield strength of AL.-2024 T3 after processing by a shock
of amplitude py, Fig. 12. The curve is also assumed valid for AL.-2024 T6.

5.3 Crater Predictions

During the course of the calculations with PICWICK III, the dynamic-
pressure was monitored in each computational cell of the finite difference
mesh. Much lower values are attained between the two regions of peak
values, one associated with the shock wave in the target and one in the
material surrounding the forming crater. Consequently, an examination
of the PICWICK IIl computer output data at a given time cycle allows the
determination of the depth into the target at which the dynamic pressure
in the region surrounding the forming crater attains a specified value, In
Fig. 13(a) the lowest such point in each column of the finite difference mesh
is depicted for two distinct times for problem N1. The dots in Fig. 13(a)
indicate the depths at which Pavn = 3.4 kb fort =1.62 u sec, and the dashes
locate this delineation criterioh at t = 2. 30 usec after impact. There is
very little variation for this extended time interval, and a smooth surface
has been sketched representing the approximate envelope of these depths.

InFig. 13(b) the computed peak axial pressure, Prnax’ attained at
varying distances into the target is plotted. By combining this curve with
the curve in Fig. 12, it is possible to estimate the residual yield stress,
o.(T), of the target material, at various depths, in the wake of the shock to

ich the material at that depth has been subjected. These values of g (T)
are also plotted in Fig. 13(a). Since the Payn = 3.4 kb surface at the a¥is
corresponds to a value ¢_(T) = 3.4 kb, the surface will be assumed to repre-
sent the final crater surface according to the criterion of equation (5.2).
Consequently, the final depth, Pc’ and radius, Rc’ of the crater are pre-
dicted on this basis to be

P /2= 2.4, R [2 = 2.2, P_/R_ = 1.09,
(5.3)

P = 0.66 cm, R = 0.6lcm .
c c



Similar results for problem N2 are presented in Fig. 14. The dots
and dashes in Fig. 14(a) indicate the depths surrounding the forming crater
at which p =3,4kbfort =1.69 wsecandt = 2,70 usec after impact,
respective‘i¥f1 The dashed curve is the approximate envelope of these loca-
tions and would represent the predicted final crater if there were no decrease
in the yield stress, g (T), for the shock processed material on this surface.
Combining the data ofyFigs. 12 and 14(b) allows the approximate yield stress
of the shock processed material along the axis to be determined, and this
information is also depicted in Fig. 14(a). Along the axis, the Pdyn = 3.4 kb
surface corresponds to a yield stress of g (T) = 1.0 kb and, consequently
does not satisfy criterion (5.2). The solig curve in Fig. 14(a) represents
the approximate envelope of the depths corresponding to Payn = 2.0 kb,
Since it corresponds to the yield stress, ¢ (T) = 2.0 kb, of the shock pro-
cessed material at that depth along the axi’s, it represents the predicted
crater surface on the basis of the criterion of equation (5.2)., Thus, for
this case,

P /4 = 4.4, R /4 = 4, P /R = 1.1,
C C C C (504)
P =1.22 cm, R =1.11 cm.
C
5.4 Verification of Predictions

1. It is of interest to re-examine the flow field calculations for
problems N1 and N2 on the basis of the principle of late-stage equivalence.
Since the hydrodynamic equations may be scaled, the calculations actually
apply for any geometrically similar aluminum-aluminum impact configura-
tion at corresponding velocity. The results of problem N1 will be compared
with those of problem N2 on an equal-energy basis. For this purpose,
the characteristic length g of problem N1 can be increased to a new value
£ to provide a kinetic energy at impact equal to that of problem N2, Since

3 2
K.E. = p 47v ",

for constant projectilé density the characteristic length 4 of the scaled
problem N1’ must satisfy the relation

3 ;2 3 2
(2") (v.)) = (2 v,) ) (5.5)
N1/ N1’/ N2
whence
, v\ 2o \2/3
P - Lz =
2 ( v’ ) (0.735) 1.949
(o]
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Also

mass’ ( ) = 7.404

mass

Consequently, distances and times computed for problem N1 are
multiplied by 1.949, and the computed total forward momentum Z+, and
the total outward radial momentum R, present within the system at any
instant of time, (equation (5.1)), are multiplied by 7.404, The scaled N1
problem, denoted by N1’, treats a projectile of dimensions ¢/ = D’ =

0.5406 cm and mass Mg = 0.335 gm impacting at velocity vo' = 0.735
cm/usec.

In Fig. 15(2) the time dependent values of Z and R, are compared
for problems N1'’and N2, The time dependent positions of the shock front
in the target, for each of the two equal energy cases, are depicted in Fig,
15(b). The shock produced by the larger but slower projectile, problem
N1’, lags the one produced by the smaller but higher velocity projectile,
problem N2, by At = 0.4u sec. The results with this correction, cor-
responding to a translation along the time axis of the R, and Z+ curves
for problem N1’, are also shown in Fig. 15(a).

The calculated peak pressures realized at various target depths
are depicted in Fig. 15(c) for problems N1’ and N2. The values attained
are very close for depths greater than 1.5 cm, corresponding to pressures
less than 110 kb,

The late-stage equivalence criterion is seen from Figs. 15(a) and
15(c) to be very nearly satisfied by energy scaling of the velocity. This
implies that the exponent ¢, for the velocity dependence of the penetration
depth, P~ v?, is very nearto ¢ = 0,67. Actually, the corrected values
of R+ and Z+ or problem N1’are somewhat greater than the corresponding
curves for problem N2 and a slightly smaller value of ¢ would be within the
accuracy of the computations.

2. The application of the late-stage equivalent criterion leads to
results entirely compatible with the predictions obtained by directly applying
criterion (5.2) to problems N1 and N2, The corresponding value of the
exponent @, for the velocity dependence of the penetration depth is implied
by (5.3) and (5.4), For Pc ~ VOO' ,

o
2.0 4.4 _ log1.83 _
( =35 ) = 57 whence o = Tog 2.72 - 0.60 (5.6)



A value of o« = 0.67 would correspond to pure energy scaling, whereas a
value of ¢ = 0, 33 would correspond to pure momentum scaling of the velo-
city effect on penetration depth. The sensitivity of estimate for ¢ becomes
apparent when it is observed that a change of Pc/z in (5. 4) to 4. 3 would
vield an estimate of o = 0,58; if the change were simultaneous with an in-
crease in the estimate of PC/L in(5.3)t0 2.5, oo = 0.54 would be obtained,

3. The prediction (5, 3) for problem N1 can be tested against avail~
able experimental data. A survey of the literature revealed six data points
with aluminum projectiles impacting aluminum targets at velocities very
close to that simulated in this calculation. Four impacts are reported in ref-
erences 24 and 25. The remaining two data points were obtained by the
General Motors Defense Research Laboratories under Contract No. NASW468
to the Lewis Research Center. Two of the thick targets are aluminum alloy
AL-2024 Té6 and four are AL-2014 T6., These data are listed in Table IV,

To provide a direct comparison with prediction (5. 3) the data were adjusted
to a common velocity and projectile mass (or size) to compensate for vari-
ations in the projectile size and velocity in the experimental data, and it was
assumed that the crater resulting from a sphere is the same as for a unit
aspect ratio cylinder of the same mass. The adjustments, made under the
assumption of energy equivalence, MO'VO'Z = Mo vOZ, are also listed in
Table IV. The prediction P_ = 0. 66 cm contained in (5. 3) is seen to lie near
the midpoint of the adjusted experimental observations.
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VI, RESULTS FOR LOW-DENSITY PROJECTILES

The strength dependent criterion, (5.2), for predicting the final
crater from the VISTA-PICWICK III calculations may now be applied to the
five impact configurations simulating impact by low density projectiles
(Table II), The 8-, Y- and & projectiles, each of average bulk density of
0.5 gm/cc, were all treated for the case of impact at Vo = 2.0 cm/u sec.
These problems, N3, N4 and N5 respectively, are set up to study the effect
of the mass distribution within the projectile. The B-projectile was also
considered at impact velocities of Vo = 0.735 and 5.0 crm/usec. The cor-
responding problems, N6 and N7, respectively, together with N3, are
examined to determine the effect of impact velocity for heterogeneous pro-
jectiles, Since problem N3 is involved in the study of both effects it will be
examined first.

6.1 Heterogeneous 8-Projectile (Problems N3, N6 and N7)

1. The early stage deformation mechanisms computed with the
VISTA code for a B-projectile impacting at e = 2,0 cm/p sec, problem N3,
are depicted in the SC~4020 plots shown in Flgs. 16(a) through 16(h). The
initial representation of the B-projectile is illustrated in Fig. 16(a). The
irregular deformation of the target during the early stages is shown in
Figs. 16(b) through 16(h). The shape of the shock front in the target, how-
ever, becomes more regular as it propagates, and at t = 0, 703 usec (Fig. 16(h)),
the distortions in the flow field are apparent only near the surface of the form-
ing crater,

The LINK program was employed at t = 0, 703 usec and calculations
resumed with PICWICK I1II, The mass flux field computed for problem N3 is
depicted in Figs. 16(i) and 16(j) for these later stages. It was necessary
to rezone the finite difference mesh during the time interval between the
times depicted in Figs, 16(i) and 16(j) in order for the mesh to encompass
the entire flow field.

The time variation of the partition of the total axial momentum,
scalar radial momentum, and total energy between projectile and target
materials for the VISTA calculations are displayed in Fig. 17. The irregular
flow observed in the graphical displays of the flow field in Fig, 16 are re-
flected in the irregularity of these gross features of the flow field. By the
time of the LINK process, however, the partition of these gross quantities
between projectile and target materials is varying smoothly with time, At
that time (t = 0,703 gsec), the radial momentum content of the projectile is
less than 10%. The axial momentum content of the projectile is actually
negative. Much of the total energy carried by the projectile material, ap-
proximately 25%, is therefore countained in the blow-off or back splash of the
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projectile illustrated in the plots of Fig., 16,

As discussed earlier for normal density projectiles, an examination
of the PICWICK III computer output data at a given time cycle allows the
determination of the depth into the target at which the dynamic pressure in
the region surrounding the forming crater attains a specified value, In
Fig. 18(a) the upper dots indicate the depths at which Pdyn = 3.4 kb for
t = 1,85 usec, and the upper dashes locate the delineation criterion for
t = 3.17usec after impact, The dashed curve forming the approximate
envelope of these locations would represent the predicted final crater if
there were no decrease in the yield stress, 0_(T), for the shock processed
material, Combining the data of Figs., 12 anar 18(b) allows the approximate
yield stress of the shock processed material along the axis to be determined
and this information is also depicted in Fig. 18(a). Along the axis the
Pavn = 3.4 kb surface corresponds to a yield stress of 0 (T) = 0.3 kb and,
coKsequently, does not satisfy criterion (5.2). The solid curve in Fig, 18(a)
represents the approximate envelope of the depths corresponding to
Pdvn = l- 8 kb and, since it corresponds to a residual yield stress of approxi-
mately the same value, it represents the predicted crater surface according
to criterion (5.2)., For the crater thus defined:

P /t=2.1, R /1 = 2.4, P /R = 0.87,
C C C (o4

Pc =1,03 cm, Rc =1,17 cm (6.1)

2. In Figs. 19(a) and 19(b) the initial stages of the flow process
are depicted for the case of a 8 -projectile impacting at Vo T 0, 735 cm/usec,
problem N6, The combination of low bulk density and low impact velocity
prevented the VISTA calculations from being carried until the projectile had
buried itself into the target, The discrete mass representation used in
VISTA did not permit an adequate resolution of the low pressures produced,
Consequently, the LINK process was employed att = 0,4354 usec and the
calculations continued with PICWICK III, The subsequent mass flux field is
illustrated by the graphical displays in Figs. 19(c) and 19(d).

For the much higher impact velocity treated in problem N7, the
B -projectile is completely buried, Figs. 20(a) and 20(b), and is then blown
backwards out of the forming crater, Figs. 20(c) through 20(f), prior to the
LINK at t = 0.4110iusec, Representative mass flux fields computed with
PICWICK HI are given in Figs, 20(g) and 20(h).

The time variation of the partition of the total axial momentum, scalar
radial momentum, and total energy between projectile and target materials
during the VISTA calculations are shown in Figs, 21 and 22 for problems
N6 and N7 respectively. For problem N6, 50% of the total axial momentum
and 60% of the total energy still remains in the projectile at the time it was
necesaary to make the LINK calculations, For the much higher impact
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velocity, v = 5. 0 cm/usec, in problem N7, less than 5% of the total energy

in the mesh remains in the projectile material at the time of the LINK process,
Much of this, moreover, remains in the back splash since the total axial
momentum in the projectile is negative at t = 0,4110usec.

For problem N6, application of the strength dependent dynamic pres-

sure criterion, (5.2), is made in Fig. 23, The predicted crater dimensions
are as follows:

P/t =1.0, R /4 =1.2, P /R = 0.83,

c c c' ¢
P =0.49, R =0,59cm (6.2)
c c

The application of the criterion for problem N7, given in Fig. 24, predicts
the following crater dimensions:

P /t=3.9, R /4 =4.3, P /R =0.91,
c c c' ¢

PC =1.91 cm, Rc =2.10 cm (6.3)

6,2 Heterogeneous Yy ~-Projectile (Problem N4)

The early stage mechanisms resulting from a ¥ -projectile impacting
at v_= 2.0 cmm/usec are depicted in Figs, 25(a) through 25(g), problem N4,
The results are similar to those for problem N3 in that the heterogeneity
of the projectile produces an irregular flow field, The VISTA calculations
were continued tot = 0, 766 gsec at which time the LINK program was
employed, The low density region at the axis of symmetry, apparent in
Figs, 25(g) and 25(h), was smoothed during the process and the computations
continued with PICWICK III, The mass flux fields computed during later
stages again show the separation into two principal regions, Figs, 25(i) and
25(j). The finite difference mesh was rezoned between the times depicted in
these last two graphical displays,

The partition of the total axial momentum, scalar radial momentum,
and total energy between projectile and target materials for time prior to
the LINK process are depicted in Fig. 26, for problem N4, Less than 10%
of each is contained in the projectile material at the time the PICWICK III
calculations are initiated,

The strength dependent dynamic pressure criterion, (5.2), has again
been applied to determine the final crater dimensions for problem N4, In
Fig, 27, the dynamic pressure in the regions surrounding the forming crater
equals the residual yield stress at the value of 1,2 kb, Accordingly, the
predicted crater surface, shown there, has the following dimensions:
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P /1 =2.3, R /t=2.5, P /R =0,92,
C (4 (o] (]

PC =1.12 cm, Rc =1.22 cm (6.4)

6.3 Homogeneous §-Projectile (Problem N5)

Quite different mechanisms are produced by the homogeneous low
density § -projectile impacting at v, = 2.0 cn/ sec. In this case, problem
N5, the projectile is not rapidly torn apart by inner and outer radial flow,
but is almost uniaxially compressed until the crush up wave travels upward
to the rear surface of the projectile, Figs. 28(a) through 28(d). Equal
pressures are obtained in the projectile and target at the interface, but the
mass density of the target material remains greater than the compressed
projectile material. The specific internal energy in the projectile material
is correspondingly higher than it is in the target material.

Some caution must be exercised in interpreting the graphical displays
of the projectile-target configurations for problem N5, The mass particles
representing the projectile material, are less than one-fifth the mass of
those representing the target material at a given initial radial position. The
greater density of the dots representing the mass particles in the projectile
material, Figs, 28(a), 28(c), and 28(e), actually corresponds to a smaller
mass density than in the neighboring target material. What appears to be a
very low density region just below theinterface in these plots reflects this
situation, The mass density in this region of the configuration is actually
greater than that of the adjacent projectile material, The rarefaction wave
originating from the rear surface of the crushed up projectile leaves the low
density material with a very high residual internal energy. This causes a
rapid blow-off of the projectile material, Figs. 28(g) and 28(h).

The VISTA calculations were terminated att = 0, 7117 gsec and the
LINK made with PICWICK III, Representative mass flux plots made subse-

quent to rezoning the PICWICK III finite difference mesh are shown in Figs,
28(i) and 28(j).

The partition of the total axial momentum, scalar radial momentum,
and total energy between projectile and target materials for times prior to
the LINK process are depicted in Fig, 29 for problem N5, The content of
the projectile material at the time of the LINK process is less than 10%
except for the energy content. Much of the 25% of the energy remaining in
the projectile is contained in that blown-off from the forming crater, as
depicted in Fig. 28(h).

For problem N5, application of criterion (5.2) is made in Fig, 30.
The predicted crater dimensions are as follows:
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Vi, COMPARISON OF RESULTS

In Table V the predicted crater characteristics are summarized for
all of the seven problems treated in this study, The dimensionless crater
characteristics (P./4, Rco/4, P./Rc) and the predicted crater depth (P.)
and radius (R.), which have been listed earlier for the various impact con-
ditions, are presented. Also listed is the approximate volume of each of
the craters, computed from

v é%‘nPR . (7.1)

These values divided by the projectile kinetic energy, V. /E_j, represent
the cratering efficiency,
2

Vv P
c 47 C Rc

Eo 3v2 Ml/3 M
o o

i/3 (7.2)

(o]

Since an uncertainty of 5% in the linear dimensions, P_ and R_, results

in an uncertainty of 15% in VC/EO, however, the values of 3 Ve EO are also
given in Table V, Finally, the predicted crater depth and radius, normalized
through division by the cube root of the projectile mass, are also listed,

In Section 5.4 it was found that the normal density &t-projectile im-
pacting at v = 0.735 cm/usec, problem N1, and at v_ = 2.0 cm/usec,
problem N2, produced flow fields satisfying the late-stage equivalence
criterion, It is also of interest to compare the flow fields produced by two
projectiles of the same velocity and mass but with different distribution of the
mass, This is the case, for example, in problems N2 and N3 in which the
o~ and B-projectiles impact at Vo = 2.0 cm/usec,

In Fig. 31(a) the time dependent values of Z, and R, are depicted for
problems N2 and N3, The time dependent positions of the shock front in the
target, for each of the two cases, are shown in Fig, 31(b). From this latter
figure it is seen that the shock produced by the heterogeneous projectile lags
the one produced by the normal density projectile only by approximately
At = 0,1 psec. A corresponding correction of the time scale for the Ry and
Z, curves associated with problem N3, Fig. 31(a) would still leave them
very far apart. It is apparent that the late~stage equivalence criterion cannot
be applied to these two problems even though the momentum and energy
delivered by the projectiles are identical, This negative result is consistent
with the fact that the crater predictions arrived at through the application of
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the dynamic pressure criterion are different, Table V. The low bulk density
of the projectile in problem N3 results in a decrease in crater depth of about
20%, but an increase in the radius of the crater of approximately 6%, If
late-stage equivalence were actually obtained, the final crater shapes and
dimensions for problems N2 and N3 would be predicted to be the same,

The velocity dependence of crater depth for the 8-projectile is given
by the results of problems N3, N6 and N7, Table V. For the velocity range
0.735 = v_ = 2.0 cm/lsec the results for N6 and N3 imply that the exponent ,
for the velocity dependence Pc ~ v%, is determined by

o

2.0 « 2,1 log 2.1
= = ;- = 2 = ° .3
( .735> 1.0 whence « Tog 2. 72 0.74 (7.3)

For the velocity range 2,0 = v = 5,0 the results for N3 and N7 imply a value
determined by

o
5.0 _ 3.9 _ _log 1.86 _
<2. 0> = 5 whence & = Tog 2.5 = 0,68 (7.4)

The relatively high values of & reflect the reduction in the penetrating
ability of the low density projectiles for lower velocities, These values for
the exponent are subject to the same uncertainties as the value & = 0, 60
associated with a normal density projectile (see Section 5. 4).

The predicted crater depths for all seven problems, normalized
through division by the cube root of the projectile mass, are displayed as a
function of impact velocity in Fig, 32. From this PC/M01/3 vs v plot, the
overall effects of the mass distribution of the projectile on its penetrating
ability in an aluminum alloy AL-2024 T6 target are clearly demonstrated:

1. Atv_ = 0.735 cm/psec the heterogeneous B -projectile of average
bulk density 0.5 gm/cc produces a crater approximately 75% as deep as that
produced by the normal density, p_ = 2.7 gm/cc, @-projectile of the same
mass,

(o]

2, At v, = 2.0 cm/usec the heterogeneous - and y-projectiles and
the homogeneous §-projectile, all of average bulk density 0.5 gm/cc, produce
craters of depths from 85% to 95% as deep as that produced by the normal
density o -projectile. The 85% corresponds to the 8 -projectile and the 95%
corresponds to the homogeneous § -projectile.

3. Atv,=5.0 cm/u sec the heterogeneous B -projectile produces a

crater approximately 90% as great as the extrapolated value of crater depth
for the normal density & -projectile,
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The normalized values of the predicted crater radii for all seven
problems are displayed as a function of impact velocity in Fig, 33, The
lines through the data corresponding to the heterogeneous 3-projectile and
the normal density &-projectile do not bracket the ¥ - and § - projectile data
as is the case in Fig, 32, This reflects the fact that the depth of the crater
for the normal density a-projectile exceeds its radius by about 10%, Table V.,
For the low density 8-, v-, and § ~projectiles, however, the opposite is true,
the depth being from 83% to 92% of the radius,

In Fig, 34 the parameter- 3 Vc/Eo is presented as-a function of
impact velocity for all seven problems treated. For a given projectile
geometry the value tends to decrease slightly with increasing impact velocity.
At vy = 2,0 cm/fsec, the homogeneous § ~projectile removes a greater
amount of target material than do the other three configurations.

In an early study (ref. 26), a particle-in-cell code of much lower
resolution than VISTA was employed and the equation of state (3.1) was used
for both the aluminum target and homogeneous aluminum projectiles of densities
0.44, 0.90, and 2,7 gm/cc, Calculations were made only for Vo = 2,0 cm/usec.
The present more careful treatment for homogeneous projectiles of density
0.5 and 2.7 gm/cc impacting at v, = 2. 0 cm/ ysec (problems N2 and N5) pre-
dicts that the final crater depths for the two densities differ by 5%, a difference
not evident in the earlier study.

The calculated results here may also be compared where there is
overlap with those reported in ref, 17, In ref, 17, the dynamic pressure
criterion was employed in the particle-in-cell calculations for homogeneous
reduced-density projectiles impacting thick steel and aluminum targets,
Homogeneous aluminum projectiles of densities 0.44 and 2.7 gm/cc were
treated for impact onto aluminum targets (AL-2024 T3) at Vg = 2.0 and 7,2
cm/u sec. The crater depths and crater volumes predicted in ref, 17 for
these four problems are also shown in Figs, 32 and 34 respectively. Although
ref. 17 does not explicitly present the associated predictions for the crater
radius, relation (7.2) has been employed to estimate R /1\/[01/3 from the listed
values of Vo /Eg and PC/MO1 3., The four values obtained are shown in
Fig., 33,

These four normalized crater depth estimates, together with the
present predictions, are also displayed in Fig, 35 where dashed lines join
points corresponding to low density and normal density homogeneous pro-
jectiles of the same impact velocity. The slopes of the dashed lines are
quite small as is the slope of the solid line joining the present predictions for
the §- and a-projectiles at impact velocity of v = 2.0 cm/u sec (problems
N2 and N5), There is agreement relative to the insensitivity of the penetration
of homogeneous projectiles to projectile density in the impact range v, = 2,0
cm/usec, However, the current study shows a significant bulk density sen-
sitivity for heterogeneous projectiles.
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VIIIL, CONCLUSIONS

The shape and size of a crater formed in a thick 2024 T6 aluminum
alloy target vary significantly with the structure and bulk density of the pro-
jectile. The craters produced by the reduced density projectiles are
shallower and wider. The effect is greater for reduced density heterogeneous
projectiles than for a homogeneous projectile of the same velocity and average
bulk density. The effect diminishes with an increase in impact velocity, but
remains significant throughout the meteoroid velocity range.
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APPENDIX

SYMBOLS
constant in relation D = A + Bu
constant in relation D = A + Bu

shock velocity

total energy

projectile impact energy

shock polar function

radial dimension of finite difference cell
internal energy per unit mass

axial dimension of finite difference cell
length of unit aspect cylindrical projectile
porosity ratio, po/?)o

total mass

projectile mass

thermodynamic pressure

dynamic pressure

crater depth

radial coordinate

total radial momentum

crater radius

shock velocity

temperature

radial particle velocity
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axial particle velocity

impact velocity

crater volume

total axial momentum

exponents in relation PC ~ v:

homogeneous projectile of normal density

first heterogeneous projectile of reduced density
second hetereogeneous projectile of reduced density
homogeneous projectile of reduced density
density ratio, p /p o

1/m

mass per unit volume

normal density

_p bulk density

(JY vield stress of target

Subscripts

H Hugoniot value

i column i of finite difference mesh

j row j of finite difference mesh

+ denotes sum of positive components
Superscripts

n n-th time cycle

denotes value at end of phase 1 calculations

denotes scaled value
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Table I.

Equation of state constants for aluminum in the gram-centimeter-

microsecond system of units (eq. 3.1).
megabars (mb).

Pressure is expressed in

Po(gm/CC)
2, (mb”)

2, (mb”)
bo(mb)

b, (mb)

b, (mb)
co(gm/CC)
c,(gm/cc)

¢ (mb)
(o]

2.700

1.1867

0. 7630

3.4448

1,5451

0.9643

0.4338

0.5487

1,5000




TABLE II. Specification of projectile configuration, projectile bulk density,
and impact velocity for each of the seven problems treated

Problem Projectile -50 (gm/ckzrcr) vo(cm/y. sec)
N1 ' a 2.7 0,735
N2 a 2,7 2.0
N3 B | 0.5 2,0
N4 y 0.5 2.0
N5 6 0.5 2,0
N6 B 0.5 0.735

N7 B 0.5 5.0
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TABLE III,

Initial pressure, shock velocity and compression in homo-~
geneous projectiles and target at impact, Values computed
using equations of state (3.1) and (3.22), respectively, for
normal density and reduced density aluminum. Units are in
the gram-~centimeter-microsecond system.,

v =0,735 v =2.0 v =5,0
o o o)
A, Projectile and target of normal density aluminum
Py (mb) 1.032 4,904 24,0
iaH (cm/usec) 1. 039 1.810 3,550
P, /P 1.547 2,242 3.390
H o
B, Target of normal density aluminum and projectile of reduced
- density, 0.5 gm/ cm3, aluminum.
pyy (mb) 0.238 1.498 8.408
RH (Target) (cmm/psec) 0,712 1.174 2.248
I.D\H (Proj.)}(cm/usec) 0.777 1.961 4,649
DH/po {(Target) 1,210 1,672 2. 601
C. 869 0,838 0.833

pH/po (Proj.)
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TABLE IV, Experimental data giving crater depth produced in thick aluminum alloy targets by aluminum

spherical projectiles, The primes denote the data extrapolated over the small changes of size
and velocity required for comparison with the predicted value for problem N1, TUnits are in the
gram~centimeter-microsecond system.

REPORTED DATA ADJUSTED VALUES
Deviation
Impact Projectile Crater Impact Projectile Crater From
Velocity Mass Depth Velocity Mass Depth Theoretical
' Prediction
Ref. Shot # Target Vg cm/ yusec Mo’ gm P., cm vo', cm/psec Mo', gm Pc' cm
%
A A Al 2014 T6 . 695 . 377 1.28 . 735 . 04525 . 663 +0.5
25 5-268 Al12014 Té . 775 .158 0.98 . 735 . 04525 . 680 +3.0
25 5-281 A12014 Té6 .735 . 158 1.00 . 735 . 04525 . 636 -3.6
25 5-283 A12014 Té6 . 697 . 158 0.96 .735 . 04525 . 660 © 0.0
# D-906 Al 2024 T6 . 753 . 0473 0.69 . 735 . 04525 . 702 1+6.4
* D-898 Al12024 T6 . 789 . 0470 0,66 . 735 . 04525 . 680 +3.0

ate
=

GM Defense Research Laboratories, NASA Contract No. NASW468.
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TABLE V, Summary of predicted crater characteristics for the seven impact problems treated, Units

are in the gram-centimeter-microsecond system.

Dimensionless Crater Normalized Crater Normalized Crater
Crater Characteristics Depth Depth Radius Radius Volume
1/3 1/3
Problem P /1 R /2 P /R P,cm P /M R ,cm R /M vV ,cc
c C c ¢ [ c o c () C

N1 2.4 2,2 1.09 0.66 1,87 0,61 1,71 0,52
N2 4.4 4,0 1.10 1,22 3,43 1,11 3,12 3,15
N3 2.1 2,4 0.87 1.03 2,89 1,17 3.29 2,95
N4 2.3 2.5 0.92 1.12 3.15 1,22 3,43 3,50
N5 2,4 2,7 0.89 1,17 3.28 1,32 3.71 4,27
N6 1,0 1,2 0,83 0.49 1,38 0.59 1,66 0,35
N7 3.9 4,3 0.91 1.91 5.36 2,10 5.90 17.6

Normalized
Volume

1/3
(Vc/E)

3.49
3,30
3.20
3.38

3.61
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PROJ. A =DICM) p, (GM/CC) p, (GM/CC)  MASS (GM)

a 2774 2.7 2.7 . 04525
B 4886 27 OR 0 0.5 .04525
y .4886 27 OR O 0.5 .04525
3 .4886 0.5 0.5 .04525

N402-2/13

Figure 1. Axial sections depicting mass distribution in the four projectile con-
figurations treated, The symbols p0 and 'po denote the local and
average densities respectively.
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Figure 3, Loading and unloading paths for a porous solid.
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(a) Projectile-target configuration, t = 0,203 usec (VISTA)

(b) Velocity field, t = 0.203 usec (VISTA)

Figure 6. Normal-density projectile, problem N1: & -projectile impacting
target at v, = 0.735 cm/usec, Graphical displays of projectile-
target configuration, velocity field, and mass flux fields at
indicated times,
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(d) Velocity field, t

Problem N1

Figure 6 continued.

52



= 0.452 usec (VISTA)

t

(e) Projectile-target configuration,

Dttt bttt il ied
d

el
P T 1Y

—rowese

415 usec (VISTA)

t=0.

(f) Velocity field,

Problem N1

d

Figure 6 continue

53



(XN ]
LN
"o
"o
ves
rer
*oe
200
T4l

.s
cesmPIISSISLISI,

s s s s mwwsssnnas

s e e nvsensssrasn

e sencwweevasnae

tssssatasvessesvne

IERERE L LTI EL LY

s e snwmemuTINIIOS
v s e cevwunueuseReae

Swwuvevee
Swevveess

IR ITI T

*sevvanusVYeL.

(g) Mass flux field, t = 0.584 gsec (PICWICK III)

Problem N1

Figure 6 continued

54



e
Iy I Y RN}

PY Y Y

1.623 ysec (PICWICK 1IT)

t =

(i) Mass flux field

2,297 psec (PICWICK III)

t =

’

ield

(j) Mass flux f

Problem N1

igure 6 concluded.

F

55



56

-
LRI L LN
svsmes e

cess

it~

AL el s el

Treversdgie s

(b) Velocity field, t = 0.158usec (VISTA)

Figure 7. Normal-density projectile, problem N2: & -projectile impacting
target at v = 2.0 cm/psec. Graphical displays of projectile-
target configuration, velocity field, and mass flux field at indi-

cated times,



0.247 usec (VISTA)

(c) Projectile-target configuration, t

,

’
’
rer e .,

4
I3
’
’

Ssavaan
NAsavae
AR NN YN
-~ sameaaa

.
.
'
.
[}
1
[}
.
S L4
’
P

AAPAPPPI AP LB A .
AAPARPIRAP PP AP S
PARADE RS s 8 o
Al il s o o e o 8 4
BB APt 8 o8 B ot

B e e e ]
AR SR LS bl L)
e R A S S I 2
SR hYe YT RN

~
>

Ll aabatal
v veerce
ooy
Croreve
PR TR

B )
A I IR

e
v
ree
cer
T
e
tre
LN
vl
rere
r’

PLPPPIPIIAP .
PPPPPPPEI s OO,

AR SRR DA B L B b
ARS AR R LR AR A RN ) 0
AR BRI A LR L S i
TV EY WS
AR RN S R

0.247 psec (VISTA)

ity field, t =

(d) Veloc

Problem N2

Figure 7 continued.

57



OO

A%’y

DO

0.449 psec (VISTA)

t =

(e) Projectile-target configuration,

’
rs

[N
e

daw

LN

’
’
I4

P Ed
e
e
P
revs

-

’

re

~
-

!
Prrrrrerr e

-

’

-
-
-
-
-,

I I SR IR A SRR AR RN

LICIE SR
r1ses..
LEE N
LR N
rer sl
veor e/
rere s
rrervre
IR XN
rerore
rreres
Vevses
rrrass
rroree
R R
rrr P e
(XA
LR REE R
LR E R
PR
Rt L PN
P TP I N

e camme LT LT TN
N e amwe e

- wemmmawaae
B
N wwuwEmeeeew
N wwaNwaw
- NmNNee A
e
A e
e,

AR TR R

~
-
.
(Y
(%Y
L3N
LY
R
T
[
(Y
e
e
[
(3K
RS
s
(Y
LY
[
s

-~
-~
LR

-~

PPl
PP
PALIe e
LR R L R I I IR
L R A
PR R TR
Brs s sl ...
PR P T PO
PP R P
PR R P
PR I PN
srAs s ma,
B R
P P PR
P TS
csdmm oo mea
P

- a .o

P LT

R EEEEE R R LR R R

P TR T
R T R
P T L )
e om——

R A R RN NN
.

0.449 psec (VISTA)

(f) Velocity field, t

Figure 7 continued. Problem N2

58



k23

s oh A

A

0.756 psec (VISTA)

t =

(g) Projectile-target configuration,

(h) Velocity field, t = 0,756 usec (VISTA)

Problem N2

Figure 7 continued.

59



-l

s

L ies
Resth by

[ ITEX YL L S 44

[ XX EEXEERRE XY R
reosesed bty

-
spm

Negd

saggs

cesng

WICK III)

(i) Mass flux field, t = 1,113 usec (PIC

. NNWITSLC S 80 wague s

WRAPIEY D 2y wgpes ¢

VLRIV S Sy » wngus ¢
““’., b s daten i
““‘...‘. .w. .
BRI PBP TRy
APPSO

13

3

[ 3

13

[

]

.
PPPIPPOG 00y o,

2 APPPLLS 8 000 oty .
- BAPALD G st @t trling s
e MALPADBE . 2b o tptirn o
P L I s UMD

»
3

e

Lo SR L LT Y PN,
oo sew e ey,

(j) Mass flux field, t = 1,699 usec (PICWICK III)

Problem N2

Figure 7 concluded

60



A

PROBLEM NI
a-PROJECTILE

PROBLEM NI
a~-PROJECTILE

19

100 100
100 - V,20.735 CM/uSEC Vo=0.735 CM/uSEC
% LINK _ - %0 %0 -

=~ TARGET
TARGET
80 80 P
L 7 TARGET e
£ 10 4 70L -7
Z o - yd n LINK v
L o LINK s £ \- 7
z PROBLEM NI wo s
0 £ 60
'g €0 |- ¢~ PROJECTILE z a
8 Vg 0735 CM/uSEC o z
N Z 50 S sop
3 50 2
E z 5
-y L w x
3 3 \ g %o
s b N w \\
4
2 3o T 30 AN 0 S
g x AN N
[ 3 \ ~
20 H 20 20 - ~
- PROJECTILE PROJECTILE
~ < _  PROJECTHLE
10 S~ 10 10 —
1 ! 1 1 1 ! 1 0 L { | | ] 1 i | I\ | | t 1
0 o1 02 03 04 05 06 07 of 02 03 04 05 06 ar 6 o o0z 03 a4 05 a6 07
TIME AFTER IMPACT (xSEC) TIME AFTER IMPACT (uSEC) TIME AFTER IMPACT (uSEC)
N402-235 N402-248 N402-247
(a) Scalar radial momentum (b) Axial momentum (c) Total Energy
Figure 8. Normal-density projectile, problem N1: - projectile impacting target at v_ = 0,735 cm/ psec.
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Figure 33, Predicted crater radius divided by cube root of projectile mass depicted as a function of
impact velocity,
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Figure 34. Cube root of the ratio of predicted crater volume divided by projectile kinetic energy depicted
as a function of impact velocity,
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